Author:
Liu Limengwei,Hu Modi,Kang Chaoqun,Li Xiaoyong
Abstract
The development and integration of information technology and industrial control networks have expanded the magnitude of new data; detecting anomalies or discovering other valid information from them is of vital importance to the stable operation of industrial control systems. This paper proposes an incremental unsupervised anomaly detection method that can quickly analyze and process large-scale real-time data. Our evaluation on the Secure Water Treatment dataset shows that the method is converging to its offline counterpart for infinitely growing data streams.
Funder
State Grid Corporation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献