Automatic Detection of the Pharyngeal Phase in Raw Videos for the Videofluoroscopic Swallowing Study Using Efficient Data Collection and 3D Convolutional Networks †

Author:

Lee Jong Taek,Park EunheeORCID,Jung Tae-Du

Abstract

Videofluoroscopic swallowing study (VFSS) is a standard diagnostic tool for dysphagia. To detect the presence of aspiration during a swallow, a manual search is commonly used to mark the time intervals of the pharyngeal phase on the corresponding VFSS image. In this study, we present a novel approach that uses 3D convolutional networks to detect the pharyngeal phase in raw VFSS videos without manual annotations. For efficient collection of training data, we propose a cascade framework which no longer requires time intervals of the swallowing process nor the manual marking of anatomical positions for detection. For video classification, we applied the inflated 3D convolutional network (I3D), one of the state-of-the-art network for action classification, as a baseline architecture. We also present a modified 3D convolutional network architecture that is derived from the baseline I3D architecture. The classification and detection performance of these two architectures were evaluated for comparison. The experimental results show that the proposed model outperformed the baseline I3D model in the condition where both models are trained with random weights. We conclude that the proposed method greatly reduces the examination time of the VFSS images with a low miss rate.

Funder

Biomedical Research Institute grant, Kyungpook National University Hospital (2018)

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Laryngology, Broncho-Esophagology, and Sleep Surgery;Otolaryngologic Clinics of North America;2024-10

2. Rapid Detection of Penetration-Aspiration from Fluoroscopic Videos in Dysphagia Patients;2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE);2023-12-04

3. Temporal Micro-Action Localization for Videofluoroscopic Swallowing Study;IEEE Journal of Biomedical and Health Informatics;2023-12

4. Machine learning in the evaluation of voice and swallowing in the head and neck cancer patient;Current Opinion in Otolaryngology & Head & Neck Surgery;2023-11-28

5. Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies;Scientific Reports;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3