Investigating Climate Change Effects on Evapotranspiration and Groundwater Recharge of the Nile Delta Aquifer, Egypt

Author:

Eltarabily Mohamed Galal12ORCID,Abd-Elaty Ismail3ORCID,Elbeltagi Ahmed4ORCID,Zeleňáková Martina5ORCID,Fathy Ismail3

Affiliation:

1. Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA

2. Civil Engineering Department, Faculty of Engineering, Port Said University, Port Said 42523, Egypt

3. Department of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

4. Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt

5. Department of Environmental Engineering, Faculty of Civil Engineering, Technical University of Košice, 04200 Košice, Slovakia

Abstract

Climate change (CC) directly affects crops’ growth stages or level of maturity, solar radiation, humidity, temperature, and wind speed, and thus crop evapotranspiration (ETc). Increased crop ETc shifts the fraction of discharge from groundwater aquifers, while long-term shifts in discharge can change the groundwater level and, subsequently, aquifer storage. The long-term effect of CC on the groundwater flow under different values of ETc was assessed for the Nile Delta aquifer (NDA) in Egypt. To quantify such impacts, numerical modeling using MODFLOW was set up to simulate the groundwater flow and differences in groundwater levels in the long term in the years 2030, 2050, and 2070. The model was initially calibrated against the hydraulic conductivity of the aquifer layers of the groundwater levels in the year 2008 from 60 observation wells throughout the study area. Then, it was validated with the current groundwater levels using an independent set of data (23 points), obtaining a very good agreement between the calculated and observed heads. The results showed that the combination of solar radiation, vapor pressure deficit, and humidity (H) are the best variables for predicting ETc in Nile Delta zones (north, middle, and south). ETc among the whole Nile Delta will increase by 11.2, 15.0, and 19.0% for the years 2030, 2050, and 2070, respectively. Zone budget analysis revealed that the increase of ETc will decrease the inflow and the groundwater head difference (GWHD). Recharge of the aquifer will be decreased by 19.74, 27.16, and 36.84% in 2030, 2050, and 2070, respectively. The GWHD will record 0.95 m, 1.05 m, and 1.40 m in 2030, 2050, and 2070, respectively when considering the increase of ETc. This reduction will lead to a slight decline in the storage of the Nile Delta groundwater aquifer. Our findings support the decision of the designers and the policymakers to guarantee a long-term sustainable management plan of the groundwater for the NDA and deltas with similar climate conditions.

Funder

Slovak Research and Development Agency

Ministry of Education of the Slovak Republic

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3