Advanced Treatment of Real Grey Water by SBR Followed by Ultrafiltration—Performance and Fouling Behavior

Author:

Kamińska Gabriela,Marszałek Anna

Abstract

Grey water has been identified as a potential source of water in a number of applications e.g., toilet flushing, laundering in first rinsing, floor cleaning, and irrigation. The major obstacle to the reuse of grey water relates to pathogens, nutrients, and organic matter found in grey water. Therefore, much effort has been put to treat grey water, in order to yield high-quality water deprived of bacteria and with an appropriate value in a wide range of quality parameters (Total Organic Carbon (TOC), nitrate, phosphate, ammonium, pH, and absorbance), similar to the values for tap water. The aim of this study was to treat the real grey water, and turn it into high-quality, safe water. For this purpose, the real grey water was treated by means of a sequential biological reactor (SBR) followed by ultrafiltration. Initially, grey water was treated in a laboratory SBR reactor with a capacity of 3 L, operated in a 24 h cycle. Then, SBR effluent was purified in a cross-flow ultrafiltration setup. Treatment efficiency in SBR and ultrafiltration was assessed using extended physicochemical and microbiological analyses (pH, conductivity, color, absorbance, Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD5), nitrate, phosphate, ammonium, total nitrogen, phenol index, nonionic and anionic surfactants, TOC, Escherichia coli, and enterococci). Additionally, ultrafiltration was evaluated in terms of fouling behavior for three polymer membranes with different MWCO (molecular weight cut-off). The values of quality parameters (pH, conductivity, COD, BOD5, TOC, N-NH4+, N-NO3−, Ntot, and P-PO43−) measured in SBR effluent did not exceed permissible values for wastewater discharged to soil and water. Ultrafiltration provided the high-quality water with very low values of COD (5.8–18.1 mg/L), TOC (0.47–2.19 mg/L), absorbanceUV254 (0.015–0.048 1/cm), color (10–29 mgPt/L) and concentration of nitrate (0.18–0.56 mg/L), phosphate (0.9–2.1 mg/L), ammonium (0.03–0.11 mg/L), and total nitrogen (3.3–4.7 mg/L) as well as lack of E. coli and enterococci. Membrane structural and surface properties did not affect the treatment efficiency, but did influence the fouling behavior.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3