Education 4.0: Teaching the Basis of Motor Imagery Classification Algorithms for Brain-Computer Interfaces

Author:

Balderas DavidORCID,Ponce PedroORCID,Lopez-Bernal DiegoORCID,Molina ArturoORCID

Abstract

Education 4.0 is looking to prepare future scientists and engineers not only by granting them with knowledge and skills but also by giving them the ability to apply them to solve real life problems through the implementation of disruptive technologies. As a consequence, there is a growing demand for educational material that introduces science and engineering students to technologies, such as Artificial Intelligence (AI) and Brain–Computer Interfaces (BCI). Thus, our contribution towards the development of this material is to create a test bench for BCI given the basis and analysis on how they can be discriminated against. This is shown using different AI methods: Fisher Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Artificial Neural Networks (ANN), Restricted Boltzmann Machines (RBM) and Self-Organizing Maps (SOM), allowing students to see how input changes alter their performance. These tests were done against a two-class Motor Image database. First, using a large frequency band and no filtering eye movement. Secondly, the band was reduced and the eye movement was filtered. The accuracy was analyzed obtaining values around 70∼80% for all methods, excluding SVM and SOM mapping. Accuracy and mapping differentiability increased for some subjects for the second scenario 70∼85%, meaning either their band with the most significant information is on that limited space or the contamination because of eye movement was better mitigated by the regression method. This can be translated to saying that these methods work better under limited spaces. The outcome of this work is useful to show future scientists and engineers how BCI experiments are conducted while teaching them the basics of some AI techniques that can be used in this and other several experiments that can be carried on the framework of Education 4.0.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference74 articles.

1. Education 4.0 Made Simple: Ideas For Teaching

2. Is Education 4.0 an imperative for success of 4th Industrial Revolution?https://pdiwan.medium.com/is-education-4-0-an-imperative-for-success-of-4th-industrial-revolution-50c31451e8a4

3. Human–Computer Interaction (HCI): Interactivity, Immersion, and Invisibility as New Extensions;Prestopnik,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3