Abstract
Putting glass doors on the display cases of refrigerators is one of the most efficient ways to reduce the energy consumption of supermarkets. However, the glass fogs up when opening the door because of the difference in air temperature inside and outside of the refrigerator, thereby obscuring the view. To defog the glass, anti-sweat heaters (ASHs) are used. In this paper, the power usage of ASHs according to changes in the dew point (DP) inside a supermarket were evaluated for two types of ASH, i.e., the door-frame ASH and the glass ASH. The evaluation was based on measurements of the condensation on the glass doors of vertical display cases, used for the preservation of frozen foodstuffs. A mathematical model of the correlation between the ASH’s power usage and the DP was developed and used for predicting the long-term energy savings. The savings were calculated based on the measured DPs inside the supermarket, which were extrapolated over a longer time period based on their correlation with the outside DPs. Regulating the door-frame ASH according to the DP resulted in an 84.6% reduction in energy consumption and a 90.1% reduction in the case of the glass ASH, compared to the current state. The correlation between the DPs inside and outside the supermarket served as a basis for the proposed implementation of the power usage regulation of the ASH according to the DP.
Funder
Slovenian Research Agency
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction