Generating 3D Geothermal Maps in Catalonia, Spain Using a Hybrid Adaptive Multitask Deep Learning Procedure

Author:

Mirfallah Lialestani SeyedORCID,Parcerisa DavidORCID,Himi Mahjoub,Abbaszadeh Shahri AbbasORCID

Abstract

Mapping the subsurface temperatures can efficiently lead to identifying the geothermal distribution heat flow and potential hot spots at different depths. In this paper, an advanced adaptive multitask deep learning procedure for 3D spatial mapping of the subsurface temperature was proposed. As a result, predictive 3D spatial subsurface temperatures at different depths were successfully generated using geolocation of 494 exploratory boreholes data in Catalonia (Spain). To increase the accuracy of the achieved results, hybridization with a new modified firefly algorithm was carried out. Subsequently, uncertainty analysis using a novel automated ensemble deep learning approach for the predicted temperatures and generated spatial 3D maps were executed. Comparing the accuracy performances in terms of correct classification rate (CCR) and the area under the precision–recall curves for validation and whole datasets with at least 4.93% and 2.76% improvement indicated for superiority of the hybridized model. According to the results, the efficiency of the proposed hybrid multitask deep learning in 3D geothermal characterization to enhance the understanding and predictability of subsurface spatial distribution of temperatures is inferred. This implies that the applicability and cost effectiveness of the adaptive procedure in producing 3D high resolution depth dependent temperatures can lead to locate prospective geothermally hotspot active regions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference101 articles.

1. Characteristics, development and utilization of geothermal resources;Lund;Geo-Heat Cent. Q. Bull. Klamath Falls Inst. Technol.,2007

2. The Future of Geothermal Energy,2006

3. The U.S. Geothermal Industry: Three Decades of Growth

4. Preliminary Financial Modelling with Probabilistic Approach for Geothermal Development Project in Indonesia

5. Status of geothermal energy use and resources in Europe;Antics;Proceedings of the European Geothermal Congress,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3