Twin Shear Unified Strength Solution of Shale Gas Reservoir Collapse Deformation in the Process of Shale Gas Exploitation

Author:

Cui Ying,Qu Zhan,Wang Liang,Wang Ping,Fang Jun

Abstract

The collapse deformation of shale has a significant influence on the exploitation process. Experimental analysis has indicated a correlation coefficient range from 0.9814 to 0.9981 and the established sample regression formula could be used to express the relationship between the dynamic elastic modulus and static elastic modulus of shale specimens. Based on the twin shear unified-strength theory, where coefficient b was considered to express the effect of intermediate principal stress, with the deduced regression formula, the unified solution of major principal strains describing a critical collapse of the shale shaft wall was derived. The results showed that the intermediate principal stress had a significant influence on the major principal strain, describing the critical collapse of the shale shaft wall. At the same depth, the critical collapse major principal strain increased with the increase in the b values. With the change in b value from 0 to 1, the calculated difference in critical collapse major principal strain with the same wellbore depth would change from 22.1% to 45.5%. With the change in b value from 0 to 1, the calculated difference in critical collapse major principal strain with the same wellbore temperature would change from 22.1% to 45.6%. The unified solution formula of the major principal strain, describing the critical collapse of the shale shaft wall expressed by the dynamic elastic modulus, could adjust the contribution of intermediate principal stress by changing the values of b, while considering the influence of temperature and confining pressure. The twin shear unified-strength solution of the shale gas reservoir collapse deformation could be used to effectively evaluate the shale gas reservoir stability during shale gas exploitation.

Funder

the Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference49 articles.

1. Analysis of hydraulic fracturing length and aperture on the production rate in fractured reservoir;Shakib;Life Sci.,2012

2. Stability analysis of wellbore for multiple weakness planes in shale formations

3. A new method for mechanical analysis of borehole wall stability based on Mogi-Coulomb strength criterion;Li;China Saf. Prod. Sci. Technol.,2018

4. Study on plastic-brittleness mechanical properties and failure law of deep brittle shale under complex mechanical environment of wellbore

5. Experimental study on acoustic and elastic parameters of rocks samples in DongPu depression;Hao;J. Oil Gas Technol.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3