The Solution of the Main Fan Station for Underground Mines Being Decommissioned in Terms of Reducing Energy Consumption by Ventilation

Author:

Szlązak Nikodem,Korzec MarekORCID

Abstract

Ventilation plays a key role in underground mining. It is essential due to the natural hazards and technological processes that come with the nature of mining. However, it is highly energy consuming and generates significant operating expenditures. Fan station parameters are selected based on the needs of a particular mine but mainly consider the requirements for the period of developed mining activities. When the period of mine decommissioning begins, the parameters of the main fan station often exceed its needs. In Poland, many mines have been closed in recent years. However, sometimes, due to the necessity of pumping underground water, it cannot be done thoroughly. In such a situation, it usually turns out that the parameters of the existing fan station significantly exceed the mine’s needs. The main fan stations are devoid of control systems, and even if they have them, they do not allow for a significant reduction of their volume flow rate. Modernising of the station to meet new requirements of the mine is expensive and time consuming. Solving the presented problem is possible by developing a fan station to replace main fans that are too big. The idea is easy to implement and consists of connecting it to an existing upcast shaft or downcast shaft, which will then be changed to upcast. The solution presented in the article has been implemented in two Polish coal mines and is in progress in a third mine. The examples presented in the article clearly show the energy benefits of replacing main fans that are too large.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3