Joint Scheduling Optimization of a Short-Term Hydrothermal Power System Based on an Elite Collaborative Search Algorithm

Author:

Duan Jiefeng,Jiang Zhiqiang

Abstract

The joint scheduling optimization of hydrothermal power is one of the most important optimization problems in the power system, which is a non-linear, multi-dimensional, non-convex complex optimization problem, and its difficulty in solving is increasing with the expansion of the grid-connected scale of hydropower systems in recent years. In this paper, three effective improvement strategies are proposed given the shortcomings of the standard collaborative search algorithm, which easily falls into local optimization and weakening of global search ability in later stages. Based on this, an elite collaborative search algorithm (ECSA) coupled with three improvement strategies is established. On this basis, taking the classic joint scheduling problem of a hydrothermal power system as an example, the optimization model with the goal of the least pollutant gas emission is constructed, and the system constraint treatment method is proposed. In addition, five algorithms, i.e., ECSA, CSA, PSO, GWO, and WOA are used to solve the model, respectively. Through the comparison of results, taking the median as an example, the emission of polluting gases of ESCA is reduced by about 1.8%, 13.1%, 38.2%, and 11.2%, respectively, and it can be found that ECSA has obvious advantages in the convergence speed and quality compared with the other four algorithms, and it has a strong ability for global search and jumps out of the local optimal.

Funder

Natural Science Foundation of Hubei Province

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3