Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests

Author:

Oliveira João V.ORCID,Costa José C.,Cavaleiro Ana J.ORCID,Pereira Maria Alcina,Alves Maria Madalena

Abstract

This work evaluates the influence of the inoculum type, the pre-consumption of the residual substrate and the ratio of blanks’ headspace volume to working volume (Hv Wv−1, 0.6 to 10) on Biochemical Methane Potential (BMP) measurements when methane is monitored by gas chromatography. Different inocula were tested: digested sewage sludge—DSS, granular sludge—GS and fresh dairy manure—DM. Microcrystalline cellulose was used as the substrate. BMP surpassed the maximum theoretical value (BMPmax = 414 L kg−1) when methane produced in the blanks was not discounted, showing that degassing cannot stand alone as an alternative to the procedure of discounting the inoculum’s background production. Still, when the residual substrate concentration is high (e.g., in DM), degassing is mandatory because methane produced from its digestion will conceal the methane produced from the substrate in the BMP determination. For inocula with a low residual substrate (e.g., GS), short degassing periods are recommended in order to avoid detrimental effects on methanogenic activity. For moderate residual substrate concentrations (e.g., DSS), BMP values closer to BMPmax (90–97%) were achieved after degassing and discounting the blanks with lower Hv Wv−1. For higher Hv ∙ Wv−1, less accurate quantification occurred, likely due to error propagation. Proper inoculum pre-incubation time and discounting the methane production from blanks with low Hv Wv−1 (adjusted according to the estimated background methane) are essential for accurate BMP determinations.

Funder

Fundação para a Ciência e Tecnologia

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. EBA Statistical Report https://www.europeanbiogas.eu/eba-statistical-report-2021/

2. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions—REPowerEU Plan (COM/2022/230 final) https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN&qid=1653033742483

3. Power and Limitations of Biochemical Methane Potential (BMP) Tests

4. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays

5. Method for determination of methane potentials of solid organic waste

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3