Abstract
As one of the most appealing options for large-scale energy storage systems, the commercialization of aqueous zinc-ion batteries (AZIBs) has received considerable attention due to their cost effectiveness and inherent safety. A potential cathode material for the commercialization of AZIBs is the manganese-based cathode, but it suffers from poor cycle stability, owing to the Jahn–Teller effect, which leads to the dissolution of Mn in the electrolyte, as well as low electron/ion conductivity. In order to solve these problems, various strategies have been adopted to improve the stability of manganese-based cathode materials. Among those, the doping strategy has become popular, where the dopant is inserted into the intrinsic crystal structures of electrode materials, which would stabilize them and tune the electronic state of the redox center to realize high ion/electron transport. Herein, we summarize the ion doping strategy from the following aspects: (1) synthesis strategy of doped manganese-based oxides; (2) valence-dependent dopant ions in manganese-based oxides; (3) optimization mechanism of ion doping in zinc-manganese battery. Lastly, an in-depth understanding and future perspectives of ion doping strategy in electrode materials are provided for the commercialization of manganese-based zinc-ion batteries.
Funder
National Natural Science Foundation of China
Sanya Science and Education Innovation Park of Wuhan University of Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献