Study on Chemical Kinetics Mechanism of Ignition Characteristics of Dimethyl Ether Blended with Small Molecular Alkanes

Author:

Niu Kai,Yao Baofeng,Xu YonghongORCID,Zhang Hongguang,Shi Zhicheng,Wang Yan

Abstract

Dimethyl ether (DME)/C1-C4 alkane mixtures are ideal fuel for homogeneous charge compression ignition (HCCI) engines. The comparison of ignition delay and multi-stage ignition for DME/C1-C4 alkane mixtures can provide theoretical guidance for expanding the load range and controlling the ignition time of DME HCCI engines. However, the interaction mechanism between DME and C1-C4 alkane under engine relevant high-pressure and low-temperature conditions remains to be revealed, especially the comprehensive comparison of the negative temperature coefficient (NTC) and multi-stage ignition characteristic. Therefore, the CHEMKIN-PRO software is used to calculate the ignition delay process of DME/C1-C4 alkane mixtures (50%/50%) at different compressed temperatures (600–2000 K), pressures (20–50 bar), and equivalence ratios (0.5–2.0) and the multi-stage ignition process of DME/C1-C4 alkane mixtures (50%/50%) over the temperature of 650 K, pressure of 20 bar, and equivalence ratio range of 0.3–0.5. The results show that the ignition delay of the mixtures exhibits a typical NTC characteristic, which is more prominent at a low equivalence ratio and pressure range. The initial temperature of DME/CH4 mixtures of the NTC region is the highest. In the NTC region, the ignition delay DME/CH4 mixtures are the shortest, whereas DME/C3H8 mixtures are the longest. At low-temperature and lean-burn conditions, DME/C1-C4 alkane mixtures exhibit a distinct three-stage ignition characteristic. The time corresponding to heat release rate and pressure peak is the shortest for DME/CH4 mixtures, and it is the longest for DME/C3H8 mixtures. Kinetic analysis indicates that small molecular alkane competes with the OH radical produced in the oxidation process of DME, which inhibits the oxidation of DME and promotes the oxidation of small molecular alkane. The concentration of active radicals and the OH radical production rate of elementary reactions are the highest for DME/CH4 mixtures, and they are the lowest for DME/C3H8 mixtures.

Funder

Hongguang Zhang

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3