Numerical Simulation of Thermal-Solutal Capillary-Buoyancy Flow of Ge1–xSix Single Crystals Driven by Surface-Tension and Rotation in a Czochralski Configuration

Author:

Yu Jia-Jia,Zhang Lu,Shen Ting,Zhang Li,Li You-Rong

Abstract

A series of three-dimensional numerical simulations were performed to understand the thermal-solutal capillary-buoyancy flow of Ge1-xSix melts during Czochralski crystal growth with a rotating crystal or crucible. The crystal and crucible rotation Reynolds numbers in this work are 0∼3.5 × 103 (0∼4.4 rpm) and 0∼−2.4 × 103 (0∼−1.5 rpm), respectively. Simulation results show that if the thermal capillary Reynolds number is relatively low, the flow will be steady and axisymmetric, even though the crystal or crucible rotates at a constant rate. The critical thermal capillary Reynolds number for the initiation of the three-dimensional oscillatory flow is larger than that of pure fluids. As the crystal or crucible rotation rate increases, the critical thermal capillary Reynolds number first increases and then decreases. The dominant flow pattern after the flow destabilization is azimuthal traveling waves. Furthermore, a reversed evolution from the oscillatory spoke pattern to traveling waves appears in the melt. Once the crystal or crucible rotation rate is relatively large, the traveling waves respectively evolve to rotating waves at the crystal rotation and a spindle-like pattern at the crucible rotation. In addition, the maximum amplitude of solute concentration oscillation on the free surface initially decreases, but finally rises with the crystal or crucible rotation rate increasing.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3