The Spreading of Antibiotic-Resistant Bacteria in Terrestrial Ecosystems and the Formation of Soil Resistome

Author:

Symochko Lyudmyla12ORCID,Demyanyuk Olena3,Symochko Vitaliy1,Grulova Daniela4,Fejer Jozef4ORCID,Mariychuk Ruslan4ORCID

Affiliation:

1. Faculty of Biology, Uzhhorod National University, Voloshyna Str. 32, 88000 Uzhhorod, Ukraine

2. Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Martim de Freitas Str., 3000-456 Coimbra, Portugal

3. Institute of Agroecology and Environmental Management, Metrologichna Str. 12, 03143 Kyiv, Ukraine

4. Department of Ecology, Faculty of Humanities and Natural Sciences, University of Presov, 17th November Str. 1, 08116 Presov, Slovakia

Abstract

Terrestrial ecosystems play a crucial role in the formation of soil resistome and the spread of antibiotic-resistant bacteria. Comprehensive studies of soil microbial communities, their structure, integrity, and level of antibiotic resistance (AR) in various terrestrial ecosystems were conducted. In total, 389 strains of dominant bacteria were isolated from the studied ecosystems, 57 of which were resistant to antibiotics, with levels of antibiotic resistance exceeding 70%. The soil microbiome of primeval forests was characterized by a low content of bacteria resistant to antibiotics; only two species, Bacillus cereus and Pantoea agglomerans, showed a high resistance to antibiotics. In the soil of agroecosystems of medicinal plants, among 106 strains of bacteria, a high level of resistance to antibiotics was found in 13 species. It was established that the number of antibiotic-resistant bacteria is highest in the soil of agroecosystems contaminated by enrofloxacin. Among 190 tested bacterial strains, 42 (22%) were characterized by a high level of antibiotic resistance. Therefore, the soil ecosystem is a key link in the formation and spread of antibiotic-resistant bacteria, which is a potential danger to humans. To reduce the risk of AR for humans, it is necessary to take appropriate measures to manage the soil microbiome and avoid soil contamination with antibiotics.

Funder

Eco-microbiological monitoring of various types of ecosystems of the Carpathian region

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3