Proactive Congestion Avoidance for Distributed Deep Learning

Author:

Kang MinkooORCID,Yang GyeongsikORCID,Yoo YeonhoORCID,Yoo ChuckORCID

Abstract

This paper presents “Proactive Congestion Notification” (PCN), a congestion-avoidance technique for distributed deep learning (DDL). DDL is widely used to scale out and accelerate deep neural network training. In DDL, each worker trains a copy of the deep learning model with different training inputs and synchronizes the model gradients at the end of each iteration. However, it is well known that the network communication for synchronizing model parameters is the main bottleneck in DDL. Our key observation is that the DDL architecture makes each worker generate burst traffic every iteration, which causes network congestion and in turn degrades the throughput of DDL traffic. Based on this observation, the key idea behind PCN is to prevent potential congestion by proactively regulating the switch queue length before DDL burst traffic arrives at the switch, which prepares the switches for handling incoming DDL bursts. In our evaluation, PCN improves the throughput of DDL traffic by 72% on average.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference45 articles.

1. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems;Chen;arXiv,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3