An Energy-Efficient Redundant Transmission Control Clustering Approach for Underwater Acoustic Networks

Author:

Ahmed GulnazORCID,Zhao Xi,Fareed Mian Muhammad Sadiq,Fareed Muhammad Zeeshan

Abstract

Underwater Acoustic Network (UAN) is an emerging technology with attractive applications. In such type of networks, the control-overhead, redundant inner-network transmissions management, and data-similarity are still very challenging. The cluster-based frameworks manage the control-overhead and redundant inner-network transmissions persuasively. However, the current clustering protocols consume a big part of their energy resources in data-similarity as these protocols periodically sense and forward the same information. In this paper, we introduce a novel two-level Redundant Transmission Control (RTC) approach that ensures the data-similarity using some statistical tests with an appropriate degree of confidence. Later, the Cluster Head (CH) and the Region Head (RH) remove the data-similarity from the original data before forwarding it to the next level. We also introduce a new spatiotemporal and dynamic CH role rotation technique which is capable to adjust the drifted field nodes because of water current movements. The beauty of the proposed model is that the RH controls the communications and redundant transmission between the CH and Mobile Sink (MS), while the CH controls the redundant inner-network transmissions and data-similarity between the cluster members. We conduct simulations to evaluate the performance of our designed framework under different criteria such as average end-to-end delay, the packet delivery ratio, and energy consumption of the network with respect to the recent schemes. The presented results reveal that the proposed model outperforms the current approaches in terms of the selected metrics.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3