Auto-Encoder Learning-Based UAV Communications for Livestock Management

Author:

Alanezi Mohammed A.,Mohammad AbdullahiORCID,Sha’aban Yusuf A.ORCID,Bouchekara Houssem R. E. H.ORCID,Shahriar Mohammad S.ORCID

Abstract

The advancement in computing and telecommunication has broadened the applications of drones beyond military surveillance to other fields, such as agriculture. Livestock farming using unmanned aerial vehicle (UAV) systems requires surveillance and monitoring of animals on relatively large farmland. A reliable communication system between UAVs and the ground control station (GCS) is necessary to achieve this. This paper describes learning-based communication strategies and techniques that enable interaction and data exchange between UAVs and a GCS. We propose a deep auto-encoder UAV design framework for end-to-end communications. Simulation results show that the auto-encoder learns joint transmitter (UAV) and receiver (GCS) mapping functions for various communication strategies, such as QPSK, 8PSK, 16PSK and 16QAM, without prior knowledge.

Funder

Deputyship for Research and Innovation, Ministry of Educa- 239 tion in Saudi Arabia

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MURE: Multi-layer real-time livestock management architecture with unmanned aerial vehicles using deep reinforcement learning;Future Generation Computer Systems;2024-12

2. Farmland parcel boundary extraction based on local feature extraction and sparse representation from remote sensing images;International Journal of Remote Sensing;2024-03-19

3. Autonomous Agriculture;Practice, Progress, and Proficiency in Sustainability;2024-02-09

4. Growth of Drones;Advances in Information Security, Privacy, and Ethics;2024-01-26

5. Applications of Drones in High-Tech Agriculture;Advances in Environmental Engineering and Green Technologies;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3