An Efficient Authentication Scheme Using Blockchain as a Certificate Authority for the Internet of Drones

Author:

Javed SanaORCID,Khan Muhammad AsgharORCID,Abdullah Ako MuhammadORCID,Alsirhani AmjadORCID,Alomari AbdullahORCID,Noor FazalORCID,Ullah Insaf

Abstract

The Internet of Drones (IoD) has recently gained popularity in several military, commercial, and civilian applications due to its unique characteristics, such as high mobility, three-dimensional (3D) movement, and ease of deployment. Drones, on the other hand, communicate over an unencrypted wireless link and have little computational capability in a typical IoD environment, making them exposed to a wide range of cyber-attacks. Security vulnerabilities in IoD systems include man-in-the-middle attacks, impersonation, credential leaking, GPS spoofing, and drone hijacking. To avoid the occurrence of such attacks in IoD networks, we need an extremely powerful security protocol. To address these concerns, we propose a blockchain-based authentication scheme employing Hyperelliptic Curve Cryptography (HECC). The concepts of a blockchain as a Certificate Authority (CA) and a transaction as a certificate discussed in this article are meant to facilitate the use of a blockchain without CAs or a Trusted Third Party (TTP). We offer a security analysis of the proposed scheme, which demonstrates its resistance to known and unknown attacks. The proposed scheme resists replay, man-in-the-middle, device impersonation, malicious device deployment, Denial-of-Service (DoS), and De-synchronization attacks, among others. The security and performance of the proposed scheme are compared to relevant existing schemes, and their performance is shown to be better in terms of security attributes as well as computation and communication costs than existing competitive schemes. The total computation cost of the proposed scheme is 40.479 ms, which is 37.49% and 49.79% of the two comparable schemes. This shows that the proposed scheme is better suited to the IoD environment than existing competitive schemes.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3