A Human-Detection Method Based on YOLOv5 and Transfer Learning Using Thermal Image Data from UAV Perspective for Surveillance System

Author:

Mantau Aprinaldi JasaORCID,Widayat Irawan WidiORCID,Leu Jenq-ShiouORCID,Köppen Mario

Abstract

At this time, many illegal activities are being been carried out, such as illegal mining, hunting, logging, and forest burning. These things can have a substantial negative impact on the environment. These illegal activities are increasingly rampant because of the limited number of officers and the high cost required to monitor them. One possible solution is to create a surveillance system that utilizes artificial intelligence to monitor the area. Unmanned aerial vehicles (UAV) and NVIDIA Jetson modules (general-purpose GPUs) can be inexpensive and efficient because they use few resources. The problem from the object-detection field utilizing the drone’s perspective is that the objects are relatively small compared to the observation space, and there are also illumination and environmental challenges. In this study, we will demonstrate the use of the state-of-the-art object-detection method you only look once (YOLO) v5 using a dataset of visual images taken from a UAV (RGB-image), along with thermal infrared information (TIR), to find poachers. There are seven scenario training methods that we have employed in this research with RGB and thermal infrared data to find the best model that we will deploy on the Jetson Nano module later. The experimental result shows that a new model with pre-trained model transfer learning from the MS COCO dataset can improve YOLOv5 to detect the human–object in the RGBT image dataset.

Funder

Kyushu Institute of Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference26 articles.

1. International Day of Forests, 21 March https://www.un.org/en/observances/forests-and-trees-day

2. Global Forest Resources Assessment 2020

3. Setiap Tahun, HUTAN INDONESIA HILANG 684.000 Hektar https://regional.kompas.com/read/2016/08/30/15362721/setiap.tahun.hutan.indonesia.hilang.684.000.hektar

4. FOREST MANAGEMENT AND ENVIRONMENTAL LAW ENFORCEMENT POLICY AGAINST ILLEGAL LOGGING IN INDONESIA

5. A Genetic Algorithm for Parallel Unmanned Aerial Vehicle Scheduling: A Cost Minimization Approach

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3