Thermal and Visual Tracking of Photovoltaic Plants for Autonomous UAV Inspection

Author:

Morando LucaORCID,Recchiuto Carmine TommasoORCID,Calla Jacopo,Scuteri Paolo,Sgorbissa AntonioORCID

Abstract

Because photovoltaic (PV) plants require periodic maintenance, using unmanned aerial vehicles (UAV) for inspections can help reduce costs. Usually, the thermal and visual inspection of PV installations works as follows. A UAV equipped with a global positioning system (GPS) receiver is assigned a flight zone, which the UAV will cover back and forth to collect images to be subsequently composed in an orthomosaic. When doing this, the UAV typically flies at a height above the ground that is appropriate to ensure that images overlap even in the presence of GPS positioning errors. However, this approach has two limitations. First, it requires covering the whole flight zone, including “empty” areas between PV module rows. Second, flying high above the ground limits the resolution of the images to be subsequently inspected. The article proposes a novel approach using an autonomous UAV with an RGB and a thermal camera for PV module tracking through segmentation and visual servoing, which does not require a GPS except for measuring the “small” relative displacement between a PV module row and the next one. With this solution, the UAV moves along PV module rows at a lower height than usual and inspects them back and forth in a boustrophedon way by ignoring “empty” areas with no PV modules. Experimental tests performed in simulation and at an actual PV plant are reported, showing a tracking error lower than 0.2 m in most situations when moving at 1.2 m/s.

Funder

Company JPDroni S.r.l.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3