Globally Attractive Hyperbolic Control for the Robust Flight of an Actively Tilting Quadrotor

Author:

Orozco Soto Santos MiguelORCID,Ruggiero FabioORCID,Lippiello VincenzoORCID

Abstract

This paper addresses the problem of robustly controlling an actively tilting quadrotor UAV. The proposed technique is model-free and it is based on hyperbolic functions of the six-dimensional pose error of the UAV with respect to the world reference frame; this hyperbolic controller globally attracts the error signals to an ultimate bound about the origin despite external disturbances, which is proved by way of a strict Lyapunov function based analysis. The effectiveness of the controller is evaluated by means of tracking and regulation experiments on adverse conditions, which were implemented on a virtual model of the UAV through a physics-engine-based simulation environment that provides an almost identical behaviour than a real UAV. The norm of the six-dimensional error signal converged to zero for the regulation experiments, whereas for tracking it did not exceed 0.05 meters, which indicated a successful operation of the control system. In addition, the performance of the hyperbolic controller was contrasted against a nonlinear PID, which resulted in a better performance in favour of the first one, who settled the errors to zero up to eight seconds before and demanded up to 2000 less revolutions per minute from the rotors while performing the same regulation tasks. All the aforesaid successful results place the proposed technique as a competitive alternative for controlling actively tilting multirotors due to its simplicity, robustness and demonstrated effectiveness.

Funder

AERIAL-CORE project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3