Automated Sortie Scheduling Optimization for Fixed-Wing Unmanned Carrier Aircraft and Unmanned Carrier Helicopter Mixed Fleet Based on Offshore Platform

Author:

Liu ZixuanORCID,Han Wei,Wu YuORCID,Su XichaoORCID,Guo FangORCID

Abstract

Optimizing naval aircraft deck sortie scheduling is important for improving the sortie efficiency of naval aircraft groups. It is also an important link in realizing the automated scheduling of aircraft carriers. Firstly, a single-aircraft surface transit path library was constructed. This paper used the improved A* algorithm and the optimal control deck path planning algorithm to construct the transit path library between the deck parking position and take-off position, or between warmable and non-warmable parking positions. Secondly, a mathematical optimization model was constructed for the sortie scheduling of a mixed fleet of fixed-wing carrier aircraft and carrier helicopters. The model took the maximum sortie time of the fleet and taxiing time of the fleet of fixed-wing aircraft as the optimization objectives, and considered the process flow, spatial, and resource constraints. Thirdly, a discretized improved whale optimization algorithm (IWOA) was designed to solve the problem. To improve the optimization-seeking capability of the algorithm, we discretized the algorithm, optimized its coding method, and introduced pre-constraints, learning factors, parameter improvements, and population restart. Finally, we set up various cases and proposed a new strategy for simulation experiments: these simulations verified the validity of the model, the excellent optimization performance of the IWOA, and the superiority of the sortie strategy. The research in this study will help to implement automated aircraft carrier scheduling.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3