Radar Emitter Recognition Based on the Energy Cumulant of Short Time Fourier Transform and Reinforced Deep Belief Network

Author:

Wang XuebaoORCID,Huang Gaoming,Zhou Zhiwen,Tian Wei,Yao Jialun,Gao Jun

Abstract

To cope with the complex electromagnetic environment and varied signal styles, a novel method based on the energy cumulant of short time Fourier transform and reinforced deep belief network is proposed to gain a higher correct recognition rate for radar emitter intra-pulse signals at a low signal-to-noise ratio. The energy cumulant of short time Fourier transform is attained by calculating the accumulations of each frequency sample value with the different time samples. Before this procedure, the time frequency distribution via short time Fourier transform is processed by base noise reduction. The reinforced deep belief network is proposed to employ the input feature vectors for training to achieve the radar emitter recognition and classification. Simulation results manifest that the proposed method is feasible and robust in radar emitter recognition even at a low SNR.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Signal sorting in ESM systems

2. Automatic radar emitter waveform recognition based on deep convolutional denoising auto-encoders;Zhou;Circuit Syst. Signal Process.,2018

3. Bias compensation based on maximum likelihood estimation for passive location using TDOA and FDOA measurements;Zhou;Acta Aeronaut. Astronaut. Sin.,2015

4. Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics;Qiu;Chin. J. Aeronaut.,2016

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3