Abstract
A novel multi-class classification method named the voting-cross support vector machine (SVM) method was proposed in this study, for classifying vehicle targets in wireless sensor networks. The advantages and disadvantages of available methods were summarized, after a comparative analysis of commonly used multi-objective classification algorithms. To improve the classification accuracy of multi-class classification and ensure the low complexity of the algorithm for engineering implementation on wireless sensor network (WSN) nodes, a framework was proposed for cross-matching and voting on the category to which the vehicle belongs after combining the advantages of the directed acyclic graph SVM (DAGSVM) method and binary-tree SVM method. The SVM classifier was selected as the basis two-class classifier in the framework, after comparing the classification performance of several commonly used methods. We utilized datasets acquired from a real-world experiment to validate the proposed method. The calculated results demonstrated that the cross-voting SVM method could effectively increase the classification accuracy for the classification of multiple vehicle targets, with a limited increase in the algorithm complexity. The application of the cross-voting SVM method effectively improved the target classification accuracy (by approximately 7%), compared with the DAGSVM method and the binary-tree SVM method, whereas time consumption decreased by approximately 70% compared to the DAGSVM method.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献