Prediction of Thermal Energy Demand Using Fuzzy-Based Models Synthesized with Metaheuristic Algorithms

Author:

Alkhazaleh Hamzah AliORCID,Nahi Navid,Hashemian Mohammad Hossein,Nazem Zohreh,Shamsi Wameed DeyahORCID,Nehdi Moncef L.

Abstract

Increasing consumption of energy calls for proper approximation of demand towards a sustainable and cost-effective development. In this work, novel hybrid methodologies aim to predict the annual thermal energy demand (ATED) by analyzing the characteristics of the building, such as transmission coefficients of the elements, glazing, and air-change conditions. For this objective, an adaptive neuro-fuzzy-inference system (ANFIS) was optimized with equilibrium optimization (EO) and Harris hawks optimization (HHO) to provide a globally optimum training. Moreover, these algorithms were compared to two benchmark techniques, namely grey wolf optimizer (GWO) and slap swarm algorithm (SSA). The performance of the designed hybrids was evaluated using different accuracy indicators, and based on the results, ANFIS-EO and ANFIS-HHO (with respective RMSEs equal to 6.43 and 6.90 kWh·m−2·year−1 versus 9.01 kWh·m−2·year−1 for ANFIS-GWO and 11.80 kWh·m−2·year−1 for ANFIS-SSA) presented the most accurate analysis of the ATED. Hence, these models are recommended for practical usages, i.e., the early estimations of ATED, leading to a more efficient design of buildings.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3