Abstract
Heart disease (HD) has surpassed all other causes of death in recent years. Estimating one’s risk of developing heart disease is difficult, since it takes both specialized knowledge and practical experience. The collection of sensor information for the diagnosis and prognosis of cardiac disease is a recent application of Internet of Things (IoT) technology in healthcare organizations. Despite the efforts of many scientists, the diagnostic results for HD remain unreliable. To solve this problem, we offer an IoT platform that uses a Modified Self-Adaptive Bayesian algorithm (MSABA) to provide more precise assessments of HD. When the patient wears the smartwatch and pulse sensor device, it records vital signs, including electrocardiogram (ECG) and blood pressure, and sends the data to a computer. The MSABA is used to determine whether the sensor data that has been obtained is normal or abnormal. To retrieve the features, the kernel discriminant analysis (KDA) is used. By contrasting the suggested MSABA with existing models, we can summarize the system’s efficacy. Findings like accuracy, precision, recall, and F1 measures show that the suggested MSABA-based prediction system outperforms competing approaches. The suggested method demonstrates that the MSABA achieves the highest rate of accuracy compared to the existing classifiers for the largest possible amount of data.
Funder
Deanship of Scientific Research at Umm Al-Qura University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献