Simulation Optimization of an Industrial Heavy-Duty Truck Based on Fluid–Structure Coupling

Author:

Song XinyuORCID,Cao Fang,Rao Weifeng,Huang Peiwen

Abstract

In order to realize the sustainable development of the field of automotive industrial engineering and reduce the emissions of heavy-duty trucks (HDTs), a simulation analysis method that combined fluid–structure coupling and a discrete phase model was proposed in this study. The pressure, velocity, and other parameters of an HDT air filter and its cartridge were analyzed by using CFX and the Static Structure module in the ANSYS software. The results showed that under six different flow rates, the error between the simulation results and the test results was basically less than 3% (the maximum error was 3.4%), and the pressure distribution of the fluid in the air filter was very uneven, leading to a severe deformation of 3.51 mm in the filter element. In order to reduce the pressure drop of the air filter and the deformation of the filter element, the position of the air inlet duct, the height of the filter element, and the number of folds of the air filter were optimized in this study. The optimization results showed that when the rated flow was 840 m3/h, compared with the original structure, the pressure drop of the air filter was reduced by 445 Pa, the maximum deformation of the filter element was reduced by 54.1% and the average deformation is reduced by 39.8%. After the optimization, the structural parameters of the air filter were as follows: the position of the air inlet moved down 126 mm along the shell, the filter height was 267 mm, and the pleat number of the filter element was 70. The simulation method and optimization design method of an air filter based on fluid–structure interaction presented in this study can be used to reduce the pressure drop, improve the engine performance, and reduce the amount of harmful emissions.

Funder

Natural Science Foundation of Shandong Province of China

Innovation Team Project of Ji’nan

Key Research and Developmental Program of Shandong Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3