Effect Evaluation of Filling Medium Parameters on Operating and Mechanical Performances of Liquid Heavy Metal Heat Storage Tank

Author:

Wang Gang,Wang Tong

Abstract

In order to evaluate the feasibility and performance of liquid lead-bismuth eutectic as the heat transfer fluid for thermocline heat storage tanks in solar power systems, we conducted an effect evaluation of filling medium parameters on the integrated operating and mechanical performances of a thermocline tank using liquid lead-bismuth eutectic using the computational fluid dynamics simulation method. Four parameters were evaluated: the porosity, thermal conductivity, specific heat capacity, and equivalent diameter of the filling medium. The results show that the liquid lead-bismuth eutectic tank operated stably. The total charging and total discharging durations were 5.7 h and 5.3 h, respectively, and the discharging efficiency was 91.94%. The effect evaluation results reveal that the discharging thermocline thickness of the liquid heavy metal tank can be decreased by increasing the specific heat capacity of the filling particles, or by decreasing the porosity, thermal conductivity, and equivalent diameter of the filling medium. The total discharging quantity of the tank increased from 2.19 × 1010 J to 3.34 × 1010 J when the specific heat capacity of the filling particles increased from 610.0 J/(kg∙K) to 1010.0 J/(kg∙K), while the other three filling medium parameters had no obvious effect on the total discharging quantity of the tank. The mechanical performance of the tank wall could be improved by decreasing any one of the four evaluated parameters of the filling medium. The results of this paper may serve as a reference for the design of actual liquid heavy metal heat storage tanks in solar power plants.

Funder

Natural Science Foundation of Jilin Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference17 articles.

1. A brief review of liquid heat transfer materials used in concentrated solar power systems and thermal energy storage devices of concentrated solar power systems;Eng. Rep.,2022

2. Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions;Appl. Energy,2010

3. Simplified model of a dual-media molten-salt thermocline tank with a multiple layer wall;Sol. Energy,2017

4. Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid;Int. J. Heat Mass Transf.,2021

5. Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials;Appl. Therm. Eng.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3