New Perspectives of Earth Surface Remote Detection for Hydro-Geomorphological Monitoring of Rivers

Author:

Zingaro MarinaORCID,La Salandra MarcoORCID,Capolongo DomenicoORCID

Abstract

In the current scenery of climate change and its relatively increasing visible effects seen over the world, the monitoring of geomorphological processes and flood dynamics becomes more and more necessary for disaster risk reduction. During recent decades, the advantages offered by remote sensing for Earth surface observations have been widely exploited, producing images, digital elevation models (DEM), maps, and other tools useful for hydro-geomorphological parameters detection, flood extent monitoring, and forecasting. However, today, advanced technologies and integrated methodologies do not yet enable one to completely provide near-real-time (NRT) and very-high-resolution (VHR) observations of a river, which is needed for risk evaluation and correct operational strategy identification. This work presents an advanced remote detection analysis system (ARDAS) based on the combination of multiple technologies, such as Unmanned Aerial Vehicle (UAV) systems, Structure from Motion (SfM) techniques, and cloud computing environment. The system allows to obtain VHR products, such as ortho-photomosaics and DEM, for deep observation of the river conditions, morphological modifications, and evolution trend. The test of ARDAS in the Basento river catchment area (Basilicata, South Italy) showed that the innovative system (i) proves to be advantageous in river monitoring due to its high accuracy, quickness, and data flexibility; (ii) could represent a NRT solution for timely support of flood hazard assessments; and (iii) can be further developed by integrating other technologies for direct application in land planning and safeguard activities by contributing to the value chain of the new space economy and sustainable development.

Funder

“Bruno e Nuccia Radina” award

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3