Smart Wireless Particulate Matter Sensor Node for IoT-Based Strategic Monitoring Tool of Indoor COVID-19 Infection Risk via Airborne Transmission

Author:

Kuncoro C. Bambang DwiORCID,Adristi Cornelia,Asyikin Moch Bilal ZaenalORCID

Abstract

Indoor and outdoor air pollution are associated with particulate matter concentration of minute size that deeply penetrates the human body and leads to significant problems. These particles led to serious health problems and an increased spread of infection through airborne transmission, especially during the COVID-19 pandemic. Considering the role of particulate matter during the spread of COVID-19, this paper presents a smart wireless sensor node for measuring and monitoring particulate matter concentrations indoors. Data for these concentrations were obtained and used as a risk indicator for airborne COVID-19 transmission. The sensor node was designed to consider air quality monitoring device requirements for indoor applications, such as real-time, continuous, reliable, remote, compact-sized, low-cost, low-power, and accessible. Total energy consumption of the node during measurement and monitoring of particulate matter concentration was minimized using a low-power algorithm and a cloud storage system embedded during software development. Therefore, the sensor node consumed low energy for one cycle of the particulate matter measurement process. This low-power strategy was implemented as a preliminary design for the autonomous sensor node that enables it to integrate with an energy harvester element to harvest energy from ambient (light, heat, airflow) and store energy in the supercapacitor, which extends the sensor node life. Furthermore, the measurement data can be accessed using the Internet of Things and visualized graphically and numerically on a graphical user interface. The test and measurement results showed that the developed sensor node had very small measurement error, which was promising and appropriate for indoor particulate matter concentration measurement and monitoring, while data results were utilized as strategic tools to minimize the risk of airborne COVID-19 transmission.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Harvesting Integration with Air Quality Monitoring Systems;2024 International Conference on Smart Applications, Communications and Networking (SmartNets);2024-05-28

2. Intelligent Engineering and Applied Sciences for Comprehensive Environmental Sustainability;Practice, Progress, and Proficiency in Sustainability;2024-01-22

3. Effect of Source Emission Control Measures on Source of Atmospheric PM2.5 during “Parade Blue” Period;Atmosphere;2023-10-31

4. An interactive national digital surveillance system to fight against COVID-19 in Bangladesh;Frontiers in Digital Health;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3