Abstract
The driver scheduling problem at Chinese electric multiple-unit train depots becomes more and more difficult in practice and is studied in very little research. This paper focuses on defining, modeling, and solving the depot driver scheduling problem which can determine driver size and driver schedule simultaneously. To solve this problem, we first construct a time-space network based on which we formulate the problem as a minimum-cost multi-commodity network flow problem. We then develop a Lagrangian relaxation heuristic to solve this network flow problem, where the upper bound heuristic is a two-phase method consisting of a greedy heuristic and a local search method. We conduct a computational study to test the effectiveness of our Lagrangian relaxation heuristic. The computational results also report the significance of the ratio of driver size to task size in the depot.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献