Assessment of Three Automated Identification Methods for Ground Object Based on UAV Imagery

Author:

Zhang KeORCID,Maskey Sarvesh,Okazawa HiromuORCID,Hayashi Kiichiro,Hayashi TamanoORCID,Sekiyama Ayako,Shimada SawahikoORCID,Fiwa Lameck

Abstract

Identification and monitoring of diverse resources or wastes on the ground is important for integrated resource management. The unmanned aerial vehicle (UAV), with its high resolution and facility, is the optimal tool for monitoring ground objects accurately and efficiently. However, previous studies have focused on applying classification methodology on land use and agronomy, and few studies have compared different classification methods using UAV imagery. It is necessary to fully utilize the high resolution of UAV by applying the classification methodology to ground object identification. This study compared three classification methods: A. NDVI threshold, B. RGB image-based machine learning, and C. object-based image analysis (OBIA). Method A was the least time-consuming and could identify vegetation and soil with high accuracy (user’s accuracy > 0.80), but had poor performance at classifying dead vegetation, plastic, and metal (user’s accuracy < 0.50). Both Methods B and C were time- and labor-consuming, but had very high accuracy in separating vegetation, soil, plastic, and metal (user’s accuracy ≥ 0.70 for all classes). Method B showed a good performance in identifying objects with bright colors, whereas Method C showed a high ability in separating objects with similar visual appearances. Scientifically, this study has verified the possibility of using the existing classification methods on identifying small ground objects with a size of less than 1 m, and has discussed the reasons for the different accuracy of the three methods. Practically, these results help users from different fields to choose an appropriate method that suits their target, so that different wastes or multiple resources can be monitored at the same time by combining different methods, which contributes to an improved integrated resource management system.

Funder

Establishment of a Sustainable Community Development Model based on Integrated Natural Resource Management System in Lake Malawi National Park (Int NRMS) Project

Japan Science and Technology Agency

Japan International Cooperation Agency

JSPS KAKENHI

Tokyo NODAI Research Institute

Tokyo University of Agriculture

Institute of Materials and Systems for Sustainability

Nagoya University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3