How Compatible Are Western European Dietary Patterns to Climate Targets? Accounting for Uncertainty of Life Cycle Assessments by Applying a Probabilistic Approach

Author:

Ruett JohannaORCID,Hennes LenaORCID,Teubler JensORCID,Braun BorisORCID

Abstract

The food system plays a crucial role in mitigating climate change. Even if fossil fuel emissions are halted immediately, current trends in global food systems may prevent the achieving of the Paris Agreement’s climate targets. The high degree of variability and uncertainty involved in calculating diet-related greenhouse gas emissions limits the ability to evaluate reduction potentials to remain below a global warming of 1.5 or 2 degrees. This study assessed Western European dietary patterns while accounting for uncertainty and variability. An extensive literature review provided value ranges for climate impacts of animal-based foods to conduct an uncertainty analysis via Monte Carlo simulation. The resulting carbon footprints were assessed against food system-specific greenhouse gas emission thresholds. The range and absolute value of a diet carbon footprint become larger the higher the amount of products with highly varying emission values in the diet. All dietary pattern carbon footprints overshoot the 1.5 degrees threshold. The vegan, vegetarian, and diet with low animal-based food intake were predominantly below the 2 degrees threshold. Omnivorous diets with more animal-based product content trespassed them. Reducing animal-based foods is a powerful strategy to decrease emissions. However, further mitigation strategies are required to achieve climate goals.

Funder

Wuppertal Institut für Klima, Umwelt, Energie gGmbH

University of Cologne

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference117 articles.

1. Masson-Delmotte, V., Zhai, H.-O.P., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., 2018: Impacts of 1.5 °C Global Warming on Natural and Human Systems. Global Warming of 1.5 °C, 2018.

2. Global Food System Emissions Could Preclude Achieving the 1.5° and 2 °C Climate Change Targets;Clark;Science,2020

3. Embodied Greenhouse Gas Emissions in Diets;Pradhan;PLoS ONE,2013

4. Carbon Footprint and Nutritional Quality of Different Human Dietary Choices;González-García;Sci. Total Environ.,2018

5. Environmental Impact of Dietary Change: A Systematic Review;Hallström;J. Clean. Prod.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3