AWS-DAIE: Incremental Ensemble Short-Term Electricity Load Forecasting Based on Sample Domain Adaptation

Author:

Li Shengzeng,Zhong Yiwen,Lin Jiaxiang

Abstract

Short-term load forecasting is a prerequisite and basis for power system planning and operation and has received extensive attention from researchers. To address the problem of concept drift caused by changes in the distribution patterns of electricity load data, researchers have proposed regular or quantitative model update strategies to cope with the concept drift; however, this may involve a large number of invalid updates, which not only have limited improvement in model accuracy, but also insufficient model response timeliness to meet the requirements of power systems. Hence, this paper proposes a novel incremental ensemble model based on sample domain adaptation (AWS-DAIE) for adapting concept drift in a timely and accurate manner and solves the problem of inadequate training of the model due to the few concept drift samples. The main idea of AWS-DAIE is to detect concept drift on current electricity load data and train a new base predictor using Tradaboost based on cumulative weighted sampling and then dynamically adjust the weights of the ensemble model according to the performance of the model under current electricity load data. For the purposes of demonstrating the feasibility and effectiveness of the proposed AWS-DAIE algorithm, we present the experimental results of the AWS-DAIE algorithm on electricity load data from four individual households and compared with several other excellent algorithms. The experimental results demonstrated that the proposed AWS-DAIE not only can adapt to the changes of the data distribution faster, but also outperforms all compared models in terms of prediction accuracy and has good practicality.

Funder

Fujian Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference37 articles.

1. Boosted neural networks for improved short-term electric load forecasting;Khwaja;Electr. Power Syst. Res.,2017

2. Modeling of district load forecasting for distributed energy system;Ma;Appl. Energy,2017

3. Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network;Ke;Evol. Intell.,2019

4. Bai, S., Kolter, J.Z., and Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv, 2018.

5. On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach;Farsi;IEEE Access,2021

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3