Evaluation of Sustainability of Wheat-Bread Chain Based on the Second Law of Thermodynamics: A Case Study

Author:

Nadi FatemehORCID,Górnicki KrzysztofORCID

Abstract

Wheat flour, bread, and bakery products are an important source of macronutrients, micronutrients, dietary fibers, and antioxidants. Considering that Iran’s bread industry is the second highest bread-consuming industry in the world, this research is focused on the main operations of the bread production chain (wheat cultivation, milling, dough processing, and bread production). Investigating the sustainability and improvement strategies and farm-to-fork approach for the wheat-bread production chain was the aim of this work. Exergy analysis is a powerful tool in designing, optimizing, and evaluating the performance of energy systems to determine energy quality, compare different energy sources, and achieve maximum system performance. In this research, the cumulative degree of perfection, renewability index, and sustainability index of Iranian traditional loaves of bread (Sangak, Lavash, Barbari) and Baguette bread as a semi-industrial bread were estimated. Considering the functional unit of the weight of the produced bread, Baguette and Sangak breads had the highest and lowest sustainability, respectively. Considering the functional unit of energy of the produced bread, Baguette bread has the lowest exergy consumption per 100 cal of the embedded energy of bread. According to the obtained results, the bakery consumes the most exergy in the wheat-bread chain. Natural gas input is the most important indicator of unsustainability in bakeries. Meanwhile, in the entire wheat-bread chain, human labor and natural gas consumption were factors of unsustainability. By using renewable sources, the renewable index increased by 76–89%. Additionally, the use of renewable resources increased the sustainability index of bread production by 7.6 to 1.9 times.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3