Satellite-Based Discrimination of Urban Dynamics-Induced Local Bias from Day/Night Temperature Trends across the Nile Delta, Egypt: A Basis for Climate Change Impacts Assessment

Author:

Abbas WaleedORCID,Hamdi IslamORCID

Abstract

The Nile Delta is the most vital region of the desert-dominated country of Egypt. Due to its prominent level of vulnerability to climate change’s negative impacts and its low capacity for adaptation and mitigation, the current study aims to provide accurate quantification of temperature change across the Nile Delta as an integral basis for sustainability and climate change impacts assessment studies. This was achieved through monitoring urban dynamics and detecting LST trends in 91 cities and their rural surroundings. The relevant local urban bias was discriminated from regional/background changes present in diurnal/nocturnal temperature records. The temperature records were then corrected/adjusted by removing this urban bias. Owing to the insufficiency of ground-based meteorological observatories, the investigation utilized moderate resolution imaging spectroradiometer (MODIS) land surface temperatures (LSTs) and Landsat-based datasets (2000–2021). The widely used Mann–Kendall test (MKT) and Theil–Sen estimator (TSE) were employed to assess trends in urban sprawl, LST time series, and the implied association. The analysis revealed that the region has experienced dramatic urbanization, where the total urban expansion was greater than two-thirds (69.1%) of the original urban area in 2000. This was accompanied by a notable warming trend in the day/night and urban/rural LST records. The nocturnal LST exhibited a warming tendency (0.072 °C year−1) larger than the diurnal equivalent (0.065 °C year−1). The urban dynamics were positively correlated with LST trends, whereas the Mediterranean Sea appeared as a significant anti-urbanization moderator, in addition to the Nile River and the prevailing northerly/northwesterly winds. The urban–rural comparison approach disclosed that the urbanization process caused a warming bias in the nighttime LST trend by 0.017 °C year−1 (21.8%) and a cooling bias in the daytime by −0.002 °C year−1 (4.4%). All results were statistically significant at a confidence level of 99%. It is recommended that studies of climate-related sustainability and climate change impact assessment in the Nile Delta should apply a distinction of urban-induced local effect when quantifying the actual regional temperature change.

Funder

Mansoura University, Egypt

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference118 articles.

1. Nile Delta in its Destruction Phase;Stanley;J. Coast. Res.,2022

2. Finlayson, C.M., Milton, G.R., Prentice, R.C., and Davidson, N.C. Nile Delta (Egypt). The Wetland Book: II: Distribution, Description, and Conservation, 2018.

3. Climate Change: The IPCC Impacts Assessment. Canberra. 2022.

4. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Cambridge. 2022.

5. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge. 2022.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3