Bisphenol A and 17α-Ethinylestradiol Removal from Water by Hydrophobic Modified Acicular Mullite
-
Published:2022-11-01
Issue:21
Volume:14
Page:14248
-
ISSN:2071-1050
-
Container-title:Sustainability
-
language:en
-
Short-container-title:Sustainability
Author:
Zhou Qiuhong,Luo Xi,He Jing,Guo Jinsong,Xu Chengjian,Wan Yanlei,Xiong Guangcheng,Xu Qi
Abstract
The hydrophilicity and hydrophobicity of adsorbents have an important influence on organic pollutants adsorption. To effectively remove bisphenol A (BPA) and 17-acetylene estradiol (EE2) from water, acicular mullite was modified by cetyl trimethyl ammonium bromide (CTMAB) to increase the hydrophobicity of the mullite. The adsorption process and mechanism of BPA and EE2 by modified acicular mullite were studied in detail. Results indicated that the concentration of CTMAB solution was related to the contact angle of CTMAB-modified mullite (CTMAB-M). The optimal concentration of CTMAB was 4 mmol/L. The CTMAB-M could adsorb more hydrophobic organic pollutants than virgin acicular mullite. Due to the electrostatic attraction and hydrophobic partitioning, the adsorption amount of BPA and EE2 on CTMAB-M increased with increasing pH. The adsorption amounts of BPA and EE2 on CTMAB-M increase with increasing ionic strength. The adsorption kinetics of BPA and EE2 adsorption on CTMAB-M could be best described by the pseudo second-order kinetics model. Thermodynamic analysis showed that the low temperature favored the adsorption of BPA and EE2 on CTMAB-M, and the adsorption was driven by entropy increase. Site energy studies indicated that BPA and EE2 firstly occupy high-energy adsorption sites and then switch to low-energy sites during the adsorption process. The average adsorption site energy μ(E*) of EE2 on CTMAB-M is smaller than BPA. CTMAB modification can significantly improve the removal efficiency of ceramsite on EDCs.
Funder
the Key Research and Development Program of Hubei Province
Changjiang Survey, Planning, Design and Research Co., Ltd.
Natural Science Foundation of Hubei Province
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献