Abstract
The rapid development of wearable electronic devices (such as in applications for health care monitoring, intelligent sports, and human–computer interaction) has led to a huge demand for sustainable energy. However, the existing equipment cannot meet the requirements of energy harvesting, wearable sensing, and environmental protection concurrently. Herein, by an environmentally friendly in situ gap-generation method and doping technology, we have manufactured an Ecoflex–PVDF composite material as a negative triboelectric layer and used gas as a support layer for the triboelectric nanogenerator (EPGS-TENG). The device has excellent electrical output performance and working stability (pressure sensitivity of 7.57 V/N, angle response capacity of 374%, output power of 121 μW, temperature adaptability from 20 °C to 40 °C, durability over 3 h, and stability of 10 days). EPGS-TENG can meet the requirements of biomechanical energy collection and wearable self-powered sensing simultaneously. EPGS-TENG shows great application potential for the new generation of wearable devices.
Funder
planning project of Liaoning Sports Science Association
“Research on the development and application of college sports” of China Higher Education Association
education planning project of Liaoning Sports Science Association
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献