A Novel Analytical Model of Mining Subsidence Considering Time Effect Based on the Probability Integral Theory

Author:

Li Peng,Li YingchunORCID,Li Qiang,Cao Zhiguo,Wang LujunORCID

Abstract

Surface subsidence caused by underground coal mining has received wide attention due to its impact on the ecological environment. To obtain first-hand data on mining subsidence, we arranged line measurement stations in the mining area of the Weiqiang coalfield and implemented surface movement observation at its first mining working face and obtained the dynamic subsidence curve. The subsidence curves reflected the initial, active and declining stages of subsidence at each measurement point at a basic level, and were consistent with the general rule of surface subsidence. To accurately analyze the surface movement caused by coal mining, based on the probability integral method and considering the actual advancement progress of the working face, a new three-dimensional dynamic prediction model, namely the strip unit mining model, was proposed. The core assumption of this model was that the longwall mining is regarded as the result of superposition of many units of mining. Considering the influence of different mining times and periods after mining, the subsidence time function of two-time factors was introduced into the strip unit mining model, and the final formulation of the dynamic subsidence prediction of the three-dimensional surface is derived by considering the time factor. Based on the analysis of the measured data of the Weiqiang coalfield, the prediction parameters of surface movement were obtained, and the surface movement and deformation are predicted via the probability integral method. Finally, the measured surface subsidence was compared with the theoretically-predicted one. The good match showed that the parameters of the probability integral method, determined according to the measured data, meet the requirements of geological conditions and mining settings in the mining area, and the predicted subsidence curves agreed well with the field measurements, demonstrating the effectiveness of the newly-developed strip unit mining model.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference45 articles.

1. Main research methods and application of mining subsidence in China;West. Explor. Eng.,2011

2. Dynamic prediction model of mining subsidence;J. Coal Sci. Eng.,2015

3. Study on some theoretical and technical problems of mining subsidence;Mine Surv.,2003

4. Review on theory and method of mining subsidence prediction;Coal Sci.,2017

5. Prediction model and engineering application of overlying strata movement and deformation caused by mining;J. Min. Strat. Control. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3