How Much Organic Carbon Could Be Stored in Rainfed Olive Grove Soil? A Case Study in Mediterranean Areas

Author:

Lozano-García BeatrizORCID,Aguilera-Huertas JesúsORCID,González-Rosado ManuelORCID,Parras-Alcántara LuisORCID

Abstract

Agricultural activities generate CO2, CH4, and N2O, affecting the global climate and the sustainability of agricultural production systems. This topic is essential in those areas where agriculture has caused soil decarbonization. The soil can regenerate by implementing sustainable soil management (SSM), and this regeneration is finite. Therefore, it is necessary to determine the maximum carbon (C) storage capacity to establish the most SSM for soil recarbonization. This research analyzes the C storage capacity in soils with rainfed olive groves and traditional tillage in the largest olive-oil-producing area in the world (Jaén, Andalusia, Spain). The results show that these soils had low soil organic C (SOC) content, ranging from 5.16 g kg−1 (topsoil) to 1.60 g kg−1 (subsoil) and low SOC stock (SOC-S) (43.12 Mg ha−1; 0–120 cm depth). In addition, the SOC fractionation showed that the highest SOC concentrations were in the particulate organic C form. The SOC-S linked to the fine mineral fraction (<20 µm) in topsoil was 21.93 Mg C ha−1, and the SOC-S saturated ranged between 50.69 and 33.11 Mg C ha−1. Therefore, on the soil surface (0–32.7 cm depth), these soils have a C storage maximum capacity of 28.76 Mg C ha−1, with a net C sink capacity of 105.55 Mg ha−1 of CO2-eq. All this suggests that these soils could have a high recarbonization capacity, and applying SSM (in the coming years) could be an essential C sink.

Funder

European Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3