Compression Molded Thermoplastic Composites Entirely Made of Recycled Materials

Author:

Sormunen PetriORCID,Kärki Timo

Abstract

Recycled post-consumer high-density polyethylene pipe plastic was agglomerated into composite samples with wood, glass fiber, mineral wool, gypsum, and soapstone as recycled particulate fillers. The tensile strength, tensile modulus, impact strength, and hardness were the mechanical properties evaluated. Scanning electron microscopy was performed on the broken surfaces of tensile strength samples to study the interfacial interactions between the composite matrix and the filler materials. Heat build-up, water absorption, and thickness swelling were the physical properties measured from the composites. The addition of particulate fillers demonstrated the weakening of the tensile and impact strength but significantly improved the rigidity of the post-consumer plastic. The composites filled with minerals had mechanical properties comparable to compression molded wood plastic composites but higher resistance to moisture. A lack of hot-melt mixing affected the mechanical properties adversely.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3