Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks

Author:

Zhou Jianguo,Xu Xiaolei,Huo Xuejing,Li Yushuo

Abstract

The randomness and volatility of wind power poses a serious threat to the stability, continuity, and adjustability of the power system when it is connected to the grid. Accurate short-term wind power prediction methods have important practical value for achieving high-precision prediction of wind farm power generation and safety and economic dispatch. Therefore, this paper proposes a novel combined model to improve the accuracy of short-term wind power prediction, which involves grey correlation degree analysis, ESMD (extreme-point symmetric mode decomposition), sample entropy (SampEn) theory, and a hybrid prediction model based on three prediction algorithms. The meteorological data at different times and altitudes is firstly selected as the influencing factors of wind power. Then, the wind power sub-series obtained by the ESMD method is reconstructed into three wind power characteristic components, namely PHC (high frequency component of wind power), PMC (medium frequency component of wind power), and PLC (low frequency component of wind power). Similarly, the wind speed sub-series obtained by the ESMD method is reconstructed into three wind speed characteristic components, called SHC (high frequency component of wind speed), SMC (medium frequency component of wind speed), and SLC (low frequency component of wind speed). Subsequently, the Bat-BP model, Adaboost-ENN model, and ENN (Elman neural network), which have high forecasting accuracy, are selected to predict PHC, PMC, and PLC, respectively. Finally, the prediction results of three characteristic components are aggregated into the final prediction values of the original wind power series. To evaluate the prediction performance of the proposed combined model, 15-min wind power and meteorological data from the wind farm in China are adopted as case studies. The prediction results show that the combined model shows better performance in short-term wind power prediction compared with other models.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3