Salinity and Heavy Metal Tolerance, and Phytoextraction Potential of Ranunculus sceleratus Plants from a Sandy Coastal Beach

Author:

Ievinsh GedertsORCID,Landorfa-Svalbe Zaiga,Andersone-Ozola Una,Karlsons Andis,Osvalde AnitaORCID

Abstract

The aim of the present study was to evaluate tolerance to salinity and different heavy metals as well as the phytoextraction potential of Ranunculus sceleratus plants from a brackish coastal sandy beach habitat. Four separate experiments were performed with R. sceleratus plants in controlled conditions: (1) the effect of NaCl gradient on growth and ion accumulation, (2) the effect of different Na+ and K+ salts on growth and ion accumulation, (3) heavy metal tolerance and metal accumulation potential, (4) the effect of different forms of Pb salts (nitrate and acetate) on plant growth and Pb accumulation. A negative effect of NaCl on plant biomass was evident at 0.5 g L−1 Na+ and growth was inhibited by 44% at 10 g L−1 Na+, and this was associated with changes in biomass allocation. The maximum Na+ accumulation (90.8 g kg−1) was found in the stems of plants treated with 10 g kg−1 Na+. The type of anion determined the salinity tolerance of R. sceleratus plants, as Na+ and K+ salts with an identical anion component had a comparable effect on plant growth: nitrates strongly stimulated plant growth, and chloride treatment resulted in slight but significant growth reduction, but plants treated with nitrites and carbonates died within 4 and 5 weeks after the full treatment, respectively. The shoot growth of R. sceleratus plants was relatively insensitive to treatment with Mn, Cd and Zn in the form of sulphate salts, but Pb nitrate increased it. Hyperaccumulation threshold concentration values in the leaves of R. sceleratus were reached for Cd, Pb and Zn. R. sceleratus can be characterized as a shoot accumulator of heavy metals and a hyperaccumulator of Na+. A relatively short life cycle together with a high biomass accumulation rate makes R. sceleratus useful for dynamic constructed wetland systems aiming for the purification of concentrated wastewaters.

Funder

The University of Latvia project “Functional diversity of ecosystems and their contribution to ecosystem services II”

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

1. Phytoremediation technology, hyper-accumulation metals in plants;Water Air Soil Pollut.,2007

2. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops;Environ. Sci. Pollut. Res.,2017

3. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads;Environ. Sci. Pollut. Res.,2017

4. Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants;Front. Plant Sci.,2015

5. Hernandez-Soriano, M.C. (2014). Environmental Risk Assessment of Soil Contamination, Intech Open.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3