Effects of Different Types of Human Disturbance on Total and Nitrogen-Transforming Bacteria in Haihe River

Author:

Li Peiyang,Chen Tingyu,An Miao,Zhang Ying,Li Yanying,Li Yang,Wang JingORCID

Abstract

Haihe River is the largest water system in North China and is injected into the Bohai Sea in Tianjin City. In this study, different types of human disturbance (urban sewage, industrial pollution, ship disturbance) were selected from the upper reaches of Haihe river Tianjin section down to the estuary that connected with Bohai Sea for evaluation. By metagenomic sequencing, the effects of different types of disturbances on bacteria communities in Haihe sediments were studied, with a special focus on the function of nitrogen-cycling bacteria that were further analyzed through KEGG comparison. By analyzing the physical and chemical characteristics of sediments, results showed that human disturbance caused a large amount of nitrogen input into Haihe River, and different types of human disturbance led to distinct spatial heterogeneity in different sections of Haihe River. The bacteria community was dominated by Proteobacteria, followed by Chloroflexi, Bacteroidetes, Actinobacteria and Acidobacteria. The relative abundance of each phylum varied at different sites as a response to different types of human disturbances. In nitrogen cycling, microorganisms including nitrogen fixation and removal were detected at each site, which indicated the active potential for nitrogen transformation in Haihe River. In addition, a large number of metabolic pathways relating to human diseases were also revealed in urban and pollution sites by function potential, which provided an important basis for the indicative role of urban river ecosystem for public health security. In summary, by evaluating both the ecological role and function potential of bacteria in Haihe River under different types of human disturbance, the knowledge of microorganisms for healthy and disturbed river ecosystems has been broadened, which is also informative for further river management and bioremediation.

Funder

Fundamental Research Funds for the Central Public Welfare Research Institutes

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3