Hydropriming and Osmotic Priming Induce Resistance against Aspergillus niger in Wheat (Triticum aestivum L.) by Activating β-1, 3-glucanase, Chitinase, and Thaumatin-like Protein Genes

Author:

Gul Summia,Hussain AmjadORCID,Ali QurbanORCID,Alam Intikhab,Alshegaihi Rana M.,Meng QinglinORCID,Zaman WajidORCID,Manghwar HakimORCID,Munis Muhammad Farooq HussainORCID

Abstract

Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments—viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters—such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59–75.00% and 64.71–88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and β-1,3-glucanase) in primed plants were evaluated: β-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of β-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference95 articles.

1. Preplant physiological seed conditioning;Khan;Hortic. Rev.,1992

2. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance;Farooq;J. Agron. Crop. Sci.,2008

3. AgNPs seed priming accelerated germination speed and altered nutritional profile of Chinese cabbage;Zhou;Sci. Total Environ.,2022

4. Effect of Halo, Hydro and Hormonal-priming on germination, seedling growth, seedling vigor and seed yield of carrot (Daucus carota) seed;Dessalew;Int. J. Nov. Res. Interdiscip. Stud.,2022

5. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters;Ali;Plant Physiol. Biochem.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3