Comparison of Dissolved Organic Matter Composition and Microbial Distribution between Distributed-Inflow Biological Reactor and Two-Stage Anoxic/Aerobic for Piggery Wastewater Treatment

Author:

Liu Jingjing,Gao JinliangORCID,Zhong Zhenxing,Cheng YayunORCID,Zhang Beiping

Abstract

Piggery wastewater contains high amounts of feces, carbon, nitrogen, phosphorus, and other contaminants, introducing serious pollution into water, soil, and the atmosphere. Biological treatment technology is widely used in large-scale pig farms because of its high efficiency and economical advantages. In this study, two typical biological treatment systems—a distributed-inflow biological reactor (DBR) and a two-stage anoxic/aerobic (A/O/A/O)—were adopted to treat piggery wastewater to compare the treatment performance, the dissolved organic matter (DOM) composition, and the microbial distribution characteristics. The results show that the A/O/A/O system had better removal performance in terms of chemical oxygen demand (COD) compared to the DBR system, and similarly effective at removing and ammonia nitrogen (NH4+-N) and total nitrogen (TN). Using parallel factor analysis of the fluorescence excitation–emission matrix, four DOM components—namely fulvic acid-like/humic-like substances (C1), tyrosine-like substances (C2), humic-like substances (C3), and tryptophan-like substances (C4)—were tracked in piggery wastewater. Protein-like substances were significantly degraded, while humic-like substances were difficult for microorganisms to utilize. The endogenous input and humus characteristics of effluents were enhanced. Bacteroidetes (43.9% and 37.5% ) and Proteobacteria (43.1% and 56.7%) are the dominant bacteria in DBR and A/O/A/O systems. The microbial metabolites in DBR and A/O/A/O systems are mainly composed of amino acids, sugars, alcohols, and other small molecules, while those in the municipal sewage treatment plant system is mainly composed of ketones, amines, acids, lipids, and other small molecules. The results of microbial communities and metabolites can help to trace the process of biological systems treating piggery wastewater.

Funder

National High Technology Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3