Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model

Author:

Hua ChenquanORCID,Chen Siwei,Xu Guoyan,Chen Yang

Abstract

Because of its unique characteristics of small specific gravity, high strength, and corrosion resistance, the carbon fiber sucker rod has been widely used in petroleum production. However, there is still a lack of corresponding online testing methods to detect its integrity during the process of manufacturing. Ultrasonic nondestructive testing has become one of the most accepted methods for inspection of homogeneous and fixed-thickness composites, or layered and fixed-interface-shape composites, but a carbon fiber sucker rod with multi-layered structures and irregular interlayer interfaces increases the difficulty of testing. In this paper, a novel defect detection method based on multi-sensor information fusion and a deep belief network (DBN) model was proposed to identify online its defects. A water-immersed ultrasonic array with 32 ultrasonic probes was designed to realize the online and full-coverage scanning of carbon fiber rods in radial and axial positions. Then, a multi-sensor information fusion method was proposed to integrate amplitudes and times-of-flight of the received ultrasonic pulse-echo signals with the spatial angle information of each probe into defect images with obvious defects including small cracks, transverse cracks, holes, and chapped cracks. Three geometric features and two texture features from the defect images characterizing the four types of defects were extracted. Finally, a DBN-based defect identification model was constructed and trained to identify the four types of defects of the carbon fiber rods. The testing results showed that the defect identification accuracy of the proposed method was 95.11%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3