Keypoint Detection for Injury Identification during Turkey Husbandry Using Neural Networks

Author:

Volkmann NinaORCID,Zelenka Claudius,Devaraju Archana Malavalli,Brünger JohannesORCID,Stracke Jenny,Spindler BirgitORCID,Kemper NicoleORCID,Koch ReinhardORCID

Abstract

Injurious pecking against conspecifics is a serious problem in turkey husbandry. Bloody injuries act as a trigger mechanism to induce further pecking, and timely detection and intervention can prevent massive animal welfare impairments and costly losses. Thus, the overarching aim is to develop a camera-based system to monitor the flock and detect injuries using neural networks. In a preliminary study, images of turkeys were annotated by labelling potential injuries. These were used to train a network for injury detection. Here, we applied a keypoint detection model to provide more information on animal position and indicate injury location. Therefore, seven turkey keypoints were defined, and 244 images (showing 7660 birds) were manually annotated. Two state-of-the-art approaches for pose estimation were adjusted, and their results were compared. Subsequently, a better keypoint detection model (HRNet-W48) was combined with the segmentation model for injury detection. For example, individual injuries were classified using “near tail” or “near head” labels. Summarizing, the keypoint detection showed good results and could clearly differentiate between individual animals even in crowded situations.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3