Molecular-Scale Hardware Encryption Using Tunable Self-Assembled Nanoelectronic Networks

Author:

Venkataraman AnushaORCID,Amadi Eberechukwu,Papadopoulos ChrisORCID

Abstract

Nanomaterials are promising alternatives for creating hardware security primitives that are considered more robust and less susceptible to physical attacks compared to standard CMOS-based approaches. Here, nanoscale electronic circuits composed of tunable ratios of molecules and colloidal nanoparticles formed via self-assembly on silicon wafers are investigated for information and hardware security by utilizing device-level physical variations induced during fabrication. Two-terminal electronic transport measurements show variations in current through different parts of the nanoscale network, which are used to define electronic physically unclonable functions. By comparing different current paths, arrays of binary bits are generated that can be used as encryption keys. Evaluation of the keys using Hamming inter-distance values indicates that performance is improved by varying the ratio of molecules to nanoparticles in the network, which demonstrates self-assembly as a potential path toward implementing molecular-scale hardware security primitives. These nanoelectronic networks thus combine facile fabrication with a large variety of possible network building blocks, enabling their utilization for hardware security with additional degrees of freedom that is difficult to achieve using conventional systems.

Funder

Natural Sciences and Engineering Research Council

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3